
NAG Fortran Library Chapter Introduction

D06 – Mesh Generation

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

3 Recommendations on Choice and Use of Available Routines 3

3.1 Boundary Mesh Generation . 3

3.2 Interior Mesh Generation . 3

3.3 Mesh Management and Utility Routines . 5

4 Example of Use in the Solution of a Partial Differential Equation 5

5 Index . 5

6 References . 5

D06 – Mesh Generation Introduction – D06

[NP3546/20A] D06.1

1 Scope of the Chapter

This chapter is concerned with automatic mesh generation

with line segments, over the boundary of a closed two-dimensional connected polygonal domain;

with triangles, over a given two-dimensional region using only its boundary mesh.

2 Background to the Problems

An important area of scientific computing in engineering is the solution of partial differential equations of
various type (for solid mechanics, fluid mechanics, thermal modelling, . . .) by means of the finite element
method. In essence, the finite element method is a numerical technique which solves the governing
equations of a complicated system through a discretisation process. The user may wish to consult Cheung
et al. (1996) to see an application of the finite element method to solid mechanics and field problems.

A key requirement of the Finite Element method is a mesh, which subdivides the region on which the
partial differential equations are defined. Note that such meshes are also essential to other discretisation
processes, such as the Finite Volume method. However, for the purpose this description we focus (without
loss of generality) on the Finite Element method. Thus, meshing algorithms are of crucial importance in
every numerical simulation based on the finite element method. In particular, the accuracy and even the
validity of a solution is strongly tied to the properties of the underlying mesh of the domain under
consideration.

In this chapter, the Delaunay constrained 2D triangulation (see George and Borouchaki (1998) or Chapter
7 of Cheung et al. (1996)) is considered and routines are provided to triangulate a closed polygonal

domain of IR2, given a mesh of its boundary (in a later Mark of the Library, software for the 3D case will

be available). A domain in IR2 is given via a discretisation of its boundary. The boundary is described as
a list of segments, with given end-point coordinates. Then an incremental method is used to generate the
set of interior vertices.

Let � be a closed bounded domain in IR2 or IR3. The question is how to construct a triangulation (mesh)
of this domain suitable for a finite element framework. Following the definition in George and Borouchaki
(1998):

T is a mesh of � if

� ¼
S

K2T K:

Every element K in T is non-empty.

The intersection of the interior of any two elements is empty.

The intersection of any two elements in T is either,

the empty set,

a vertex,

an edge,

a face (in IR3).

In the finite element method, the meshes are in general denoted T or T h, where the index h refers to a
measure of the diameter (length of the longest edge) of the elements in the mesh. A triangulation is a set
of entities described in a suitable manner by picking an adequate data structure. The algorithm for
triangulation construction creates a table of elements in the triangulation as well as the neighbourhood
relationships between the elements. Those elements are meant to satisfy the so-called ‘empty sphere
criterion’ which means that the open ball associated with the element (the circumcircle of the triangle in
2D, and the circumsphere of the tetrahedron in 3D) does not contain any vertices (while the closed ball
contains the vertices of the element in consideration only). This criterion is a characterisation of the
Delaunay triangulation.

Given T i the Delaunay triangulation of the convex hull of the first i points, the purpose of the
incremental method (which is the main method to generate nodes and elements inside the domain) is to
obtain T iþ1 the Delaunay triangulation which includes an ðiþ 1Þth point P as an element vertex. To this

Introduction – D06 NAG Fortran Library Manual

D06.2 [NP3546/20A]

end, one can introduce a procedure referred to as the ‘Delaunay kernel’ construction. This kernel is

T iþ1 ¼ T i � CP þ BP ;

where BP is the ball associated with P and CP is the associated cavity. The ball associated with a given
point P is the set of elements in the triangulation including P as a vertex, while the cavity is the set of
elements whose circumcircles or circumballs enclose the point P . One can prove that, given T i a
Delaunay triangulation of a convex hull of the first i points, then T iþ1 is a Delaunay triangulation of the
hull that includes P as the ðiþ 1Þth vertex. The completion of a Delaunay triangulation relies on applying
the Delaunay kernel procedure to every point.

The problems here are

to choose the input data T 0 of the incremental method, and

to generate at each iteration this ðiþ 1Þth point, such that T iþ1 is still a Delaunay triangulation of
the convex hull of the ðiþ 1Þ points.

For a finite element application, it is required to construct a mesh of the domain � whose elements are as
close to equilateral as possible.

The mesh generation methods include an initial creation stage resulting in a mesh T 0, without internal
points, except for any specified interior points (see George and Borouchaki (1998) for more details). Such
a mesh is referred to as the ‘empty mesh’. This mesh consists of a box which includes the whole
geometry plus some vertices on the edge of that box. From here the methods differ in how the required
internal points are created.

The general principle of interior mesh generation is to either create a point and insert it immediately by
means of the Delaunay method (the so-called Delaunay kernel), repeating the process as long as points can
be created, or to generate a series of points, insert this series and iterate the process as long as a non-empty
series is created. At this stage it is quite useful to define the notion of a control space to govern the

internal point creation. The ‘ideal’ control is the input of a function defined analytically at any point of IR2

and which specifies the size and the direction features that must be conformed to anywhere in the space.

To construct such a function, one can consider several approaches. For our purpose in this chapter, this
control function computes, from data, the local step sizes (the desired distance between two points) related
to the given points. A generalised interpolation then enables us to obtain the function everywhere. This
process is purely geometric in the sense that it relies only on the geometric data properties: boundary edge
lengths, and so on. The user is advised to consult George and Borouchaki (1998) for more details about
this strategy, especially about the other approaches which can be considered to construct the control
function.

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Boundary Mesh Generation

The first step to mesh any domain of IR2 or IR3 is to generate a mesh of the domain boundary. In this
chapter, since only the 2D case is considered, the relevant routine is D06BAF. This routine meshes with

segments a boundary of a closed connected polygonal domain of IR2, given a set of characteristic points
and characteristic lines which define the shape of the frontier. The boundary has to be partitioned into
geometrically simple lines. Each line segment may be a straight line, a curve defined by an equation of the
type fðx; yÞ ¼ 0, or simply a polygonal curve, delimited by characteristic points (end-points of the lines).
Then, the user can assemble those lines into connected components of the domain boundary.

3.2 Interior Mesh Generation

In this chapter three routines are provided to mesh a domain given a discretisation of its boundary with
optionally specified interior points.

D06ABF uses an internal point construction method along the internal edges. Using the control
function, a small number of points are generated along each edge.

D06 – Mesh Generation Introduction – D06

[NP3546/20A] D06.3

D06ACF uses a point creation method based on an advancing front point placement strategy,
starting from the ‘empty mesh’.

D06AAF uses a simple incremental method based on a control function given analytically via the
argument POWER.

Any point construction method results in a set of points. These points are then inserted by means of the
Delaunay kernel.

The point insertion process is completed by successive waves. The first wave results from the empty mesh
edge analysis (edge method) or from the empty mesh front analysis (advancing front method). Subsequent
waves correspond to the analysis of the edges of the previous mesh. For the advancing front strategy, the
waves follow the analysis of the front associated with the current mesh.

One can propose a general scheme for a mesh generation method. Seven steps can be identified as
follows.

Preparation step.

Data input: point coordinates, boundary edges and internal edges (if any),

construction of the bounding box,

meshing of this box by means of a few triangles.

Construction of the box mesh.

Insertion of the given points in the box mesh using the Delaunay kernel.

Construction of the empty mesh.

Search for the missing specified edges,

enforcement of these edges,

definition of the connected components of the domain.

Internal point creation and point insertion.

Control space definition,

ð1Þ internal edge analysis, point creation along these edges,

point insertion via the Delaunay kernel and return to ð1Þ.
Domain definition.

Removal of the elements exterior to the domain,

classification of the elements with respect to the connected components.

Optimisation.

edge swapping,

point relocation, . . .

File output.

When using the advancing front approach described earlier, one has to replace the step denoted by ð1Þ of
the general scheme. The analysis of the edges of the current mesh is then replaced by the front analysis.

Due to the fact that the particular mesh generated by D06AAF, D06ABF and D06ACF may be sensitive to
the platform being used; there may be differences between generated nodal coordinates and connectivities.
However all meshes generated should be expected to satisfy the ‘empty sphere criterion’.

Introduction – D06 NAG Fortran Library Manual

D06.4 [NP3546/20A]

3.3 Mesh Management and Utility Routines

In addition to meshing routines, management and utility routines are also available in this chapter.

A mesh smoother routine D06CAF, is provided to improve mesh triangle quality.

Since the Finite Element framework includes a requirement to solve matrices based on meshes, the routine
D06CBF generates the sparsity pattern of such a matrix. Due to the fact that the numbering of unknowns
in a linear system could be crucial in term of storage and performance issues, a vertex renumbering routine
D06CCF is provided. This routine also returns the new sparsity pattern based on the renumbered mesh.

To mesh a complicated geometry, it is sometimes better to partition the whole geometry into a set of
geometrically simpler ones. Some geometry could also be deducted from another geometry by an affine
transformation and D06DAF could be used for that purpose. D06DBF is provided to join all the simple
geometry meshes. This routine can also handle the joining of two adjacent as well as overlapping meshes,
which may be useful in a domain decomposition framework.

4 Example of Use in the Solution of a Partial Differential Equation

The use of D06 mesh generation routines, together with sparse solver routines from Chapter F11 to solve
partial differential equations with the finite element method is described in a NAG Technical Report (see
Bouhamou (2001)). This report, and accompanying source code, is available from the NAG web site, or
by contacting one of the NAG Response Centres.

5 Index

Interior mesh generation
2D mesh generation using Delaunay-Voronoi method .. D06ABF
2D mesh generation using advancing front method ... D06ACF
2D mesh generation using a simple incremental method ... D06AAF

Boundary mesh generation
2D boundary mesh generation .. D06BAF

Mesh Management and Utility routines
2D mesh smoother using a barycentering technique .. D06CAF
Finite Element matrix sparsity pattern generation ... D06CBF
2D mesh vertex renumbering ... D06CCF
2D mesh transformer by an affine transformation .. D06DAF
joins together two given adjacent (possibly overlapping) meshes. ... D06DBF

6 References

Bouhamou N (2001) The use of NAG mesh generation and sparse solver routines for solving partial
differential equations NAG Technical Report TR 1/01 NAG Ltd, Oxford

Cheung Y K, Lo S H and Leung A Y T (1996) Finite Element Implementation Blackwell Science

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

Quarteroni A and Valli A (1997) Numerical Approximation of Partial Differential Equations Comp. Maths.
23

D06 – Mesh Generation Introduction – D06

[NP3546/20A] D06.5 (last)

	D06
	1 Scope of the Chapter
	2 Background to the Problems
	3 Recommendations on Choice and Use of Available Routines
	3.1 Boundary Mesh Generation
	3.2 Interior Mesh Generation
	3.3 Mesh Management and Utility Routines

	4 Example of Use in the Solution of a Partial Differential Equation
	5 Index
	6 References

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

